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ABSTRACT 

This thesis is concerned with the analysis of various methods for the numeri- 

cal solution of the shallow water equations along with the stability of these methods. 

Most of the thesis is concerned with the background and formulation of the shallow 

water equations. The derivation of the basic equations will be given, in the primitive 

variable and vorticity-divergence formulation. Also the shallow water equations will 

be written in spherical coordinates. Two main types of methods used in approximat- 

ing differential equations of this nature will be discussed. The two schemes are finite 

difference method (FDM) and the finite element method (FEM). After presenting 

the shallow water equations in several formulations, some examples will be presented. 

The use of the Fourier transform to find the solution of a semidiscrete analog of the 

shallow water equations is also demonstrated. 
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I.        INTRODUCTION 

The majority of this work is a compilation of past mathematical papers con- 

cerning the numerical solution of the shallow water equations, and I can in no way 

take credit for them. Hopefully I have put this material in a readable and under- 

standable text that will provide a good basis for others to use for reference in this 

area of mathematics. The next several paragraphs will highlight the key points in 

slightly more detail than the Table of Contents. 

Chapter II shall review and discuss the mathematical formulation of flow 

in shallow regions. Two formulations will be given, namely the primitive and the 

vorticity-divergence formulations of the shallow water equations. It will also look at 

the formulation of the equations in spherical coordinates. 

Chapter III will look at the linearization of the shallow water equations. In 

Cartesian coordinates we discuss the one dimensional and two dimensional cases. 

The linearized vorticity-divergence form of the shallow water equations is derived in 

this chapter for the two dimensional case. The spherical case is also discussed here. 

Note that in the Cartesian case, the linearized equations have constant coefficients in 

contrast to the spherical coordinates. This means that linear stability analysis will 

l»<* more difficult in the latter. 

Chapter IV shall develop two of the different types of approximations com- 

monly used. The first is the finite difference, and the second is the finite element. The 

finite element may also be referenced to as the Galerkin method and will be referred 

to by both names in this thesis. Other families of methods such as spectral or finite 

volume approximation are beyond the scope of this thesis. 

In Chapter V, the stability analysis of the shallow water equations will be 

examined. For this analysis we use the linearized equations obtained in Chapter II. 

Fourier transforms in a one dimensional case will be covered. Fourier transforms 

will also be used to look at the two dimensional case.   The spherical case requires 



special consideration as in Longuet-Higgins(see [Ref. 1]) or Neta (see [Ref. 2]). A 

summary of the results for the various techniques are provided in a table for ease of 

later examination. 

Also covered in this report will be an extensive bibliography and reference 

section, so that future students studying in this area will be able to pick up more 

easily where this thesis leaves off. 



II.        SHALLOW WATER MODEL 

A.     MODEL BACKGROUND 

For this model consider a sheet of fluid with constant and uniform density. 

(See [Ref. 3].) The height of the surface of the fluid above the reference level z = 0 is 

h(x, y, t). We model the body force arising from the potential 4> = gh with atmosphere 

or ocean in mind. (j> is a vector directed perpendicular to the z = 0 surface, or <f> can 

be said to be antiparallel to the vertical axis (i.e., 4> is in the direction opposite to 

the vertical axis). The rotation axis of the fluid is the ,z-axis in this model. In this 

ease the Coriolis parameter / is 20 since 0 = kü. The rigid bottom is defined by 

the surface z = hß(x,y). The velocity has components u, v, and w in the x, y, and 

z directions respectively. Though the pressure of the fluid surface can be arbitrarily 

imposed, for this model it will be assumed to be constant. Lastly, the fluid is assumed 

inviscid, in other words, only the motions for which viscosity is not important are 

considered. 

In this model, because the depth of the fluid, h — hß, varies over time or space, 

let H be the average depth of the fluid. H characterizes the vertical scale of motion 

also. Let L be the characteristic horizontal scale for the motion. Then a fundamental 

condition which will characterize shallow water theory will be 

f- 
which is also called the hydrostatic approximation with long wavelengths. (See [Ref. 

4].) The shallow water model contains several of the important dynamical features 

of the atmosphere and ocean while being simple enough to be easily understood. 

The major physical difference with this model and reality is the absence of density 

stratification that is present in the real fluids such as Earth's atmosphere or oceans. 

The hydrostatic approximation also allows p to vary with z, but we will consider p 

constant for this model. 



Recalling the equation for motions of fluids from Haitiner and Williams (see 

[Ref. 5], we have 

dV -*     - 
— = -a\/p-2ü x V + g+F. (2.1) 

o is the specific gravity (i.e. M, g is the sum of gravitational and centrifugal forces, 

and F is the force due to friction. For our model we will be neglecting g and F 

because with our assumptions they are much smaller in magnitude than the Coriolis 

forces. Recall that 

dV      dV     \-  ->    - -      - 

where V = ui + vj + wk. Using these two basic equations, we will construct our 

model. 

B.     MODEL EQUATIONS 

There are several formulations in the literature. We will cover 

• primitive variable formulation 

• vorticity divergence formulation. 

The formulations using stream function and velocity potential will not be discussed 

here, (see, for example, [Ref. 5]). 

1.      Primitive Form 

Now follow the consequences of the model in the realm of the dynamical equa- 

tions of motion. Recalling the Navier-Stokes equations which describe the conser- 

vation of mass and momentum (see [Ref. 6]), we see that the dynamics and the 

thermodynamics decouple due to the specification of incompressibility and constant 



density. (See [Ref. 3].) This reduces the equation of mass conservation to the condi- 

tion of incompressibility: 
du     dv     dw     „ ,n „. 
ox     dy      dz 

Now the first two terms of this equation are of order —, where £/ can be considered 
Li 

the characteristic scale for the horizontal velocity. It then follows that the scale for 

the vertical velocity (W) is smaller than or equal to the order SU. This represents an 

upper bound for the vertical velocity, and it can be smaller than order 5U if there is 
.... du      . dv 

cancellation between — and —. 
dx dy 

Now an estimate of the momentum equations in component form are: 

du       du       du        du _       1 dp 
dt       dx       dy        dz p dx 
U       IP       IP      UW_ P_ 
T        L L H      * PL 

(2.4) 

dv       dv      dv       dv 1 dp 
— +U— + V— + W— + fu        =    — — 
dt       dx       dy       dz p dy 
U       IP       lß_      UW_ _P_ 
T        L L H      * pL 

dw       dw       dw       dw 1 dp 
dt        dx       dy        dz p dz 
W      UW_      UW_      VP_ _P_ 
T L L H pH 

f will be defined differently depending on the form of the shallow water equations. 

In (2.4) each term has the order of magnitude written immediately below it in terms 

of the characteristic scales where T is the characteristic scale for time and P is the 

characteristic scale for the pressure field. Equation (2.4) follows from (2.1) and (2.2) 

in the following manner. Remember that we are neglecting the gravity term and the 



force due to friction. Now when we expand out (2.1), we get 

dV ldp^     Idp^     ldp-. 
dt pdx      pdy      pdz 

which equals 

+2tt(j cos <p + ksin <p>) x (ui + vj + wk), 

dV   _      I dp-?    I dp-?    Idp? 
dt pdx      pdy      p dz 

(2.5) 

+(2wtt cos ip - fv)i + fuj — 2utt cos ipk. 

Since we are modeling a rectangular system first, the ip terms drop out and (2.5) 

becomes 
dV        ldp-f    I dp-*    ldpr        *    , -, (oa\ 
—- = ——i--—j--—k-fvi + fuj. (2.6) 
dt pox      pay      p oz 

When we look at the spherical form of the shallow water equations, the ip terms are 

used. Note that 

~      -*      Idw     dv\ w    Idu     dw\ -t     f dv     du\ -* 
\dy     dz)       \dz     dxj        \dx     dy) 

Now, expanding out (2.2) we get 

dV dV     ( du       dv       dw\ ->    ( du      dv       dw\ - 
dt dt      \  dx       dx        dxj       \  dy ■    dy        dy J 

( du       dv       dw\ ~ 
+    u-z- + v— + to—    k + 

V   dz       dz        dz I 
w 

'du 
Tz 

dws 

dx 
' dv     du 
dx     dy/ 

+ u 
' dv     du 
dx     dy 

Collecting terms, this becomes 

dV 

w 
'dw 

Kdy 

dv' 
d~z j + 

'dw 

dy 

dvs 

d~z, 
— u 

'du     dws 

dz     dx, 

(du       du       du       du\ - 
-di+uo-x+vdy:+wYz r 

(dv       dv       dv       dv\ -     (dw       dw       dw        dw\ r> 
dt       dx       dy       dz J        \dt        dx        dy        dz J 



or more simply 

Equating the right hand side of (2.6) and this equation and then separating into the 

three components will give us (2.4). 

Note that the total pressure (p) is 

p(x, y, z, t) = -pgz + p(x, y, z, t). 

The horizontal pressure gradient is independent of z if one uses the hydrostatic ap- 

proximation 

j£ = -P9 + 0(S2) (2.7) 

ii 

where 8 is — and 8 <C 1 .   This approximation follows from the scale analysis of 
L/ 

the momentum equations and the incompressibility condition. Integrating (2.7) and 

using the boundary condition 

p(x,y,h)=p0 

yields 

p = pg(h - z) + p0. 

A way to look at this is to think of the pressure which is in excess of po at any point 

simply as the weight of the unit column of fluid above that point at that particular 

instant in time. Remember that the horizontal pressure gradient is independent of z, 

and therefore the horizontal accelerations are independent of z. 

The Rossby-wave number is the ratio of inertia to the Coriolis terms or (77). 

Recalling the Taylor-Proudman theorem (see, [Ref. 3] p. 43) which simply put states 

that if the Rossby-wave number is small, friction can be ignored, and baroclinic vector 

is identically zero (i.e., there is no additional pressure change with a change in height 

as in this model), then it follows that the horizontal accelerations are independent of 

du _ dv 
dz      dz 



In this model, the Taylor-Proudman theorem applied to a homogeneous fluid requires 

the velocities to be independent of z. This allows the horizontal momentum equations 

to become 
du       du       du 
dt       dx       dy 

dv       dv       dv 
-d-t+Ud-X

+Vdy- + fU 

\_d]>_ 
p dx 

ldß 

P dy 

(2.8) 

Let us look at the scale analysis of the vertical momentum equation of (2.4). 

Consider w to be of O (f) = 0(8). Scale u and v by U, and w by ft/. By (2.3) we 

know that 
du      dv     dw 
 f- h — = 0. 
dx1     dy'     dz' 

where 

u Uü 
x 

X'     = 

Uv 
L 

w SUw z'    = 
z 
H' 

The vertical momentum equation can be written as 

SU 

Multiply through by H and this becomes 

dw     U  dw     U„dw      U „dw 
m+IÜdz->+LVdy-> + 6HWdz-' 

,,dw     rrc„dw     rTC~dw     CTT~dw 
Hm+U6udx-' + USvdy-' + 6Uw^'. 

l_\df>_ 
Hpdz'' 

_}_dp_ 
~pdzr 

Removing all the terms of 0(62), note from (2.7) that p is of 0(62) also, we have 

6UHd-£ = 0. 
at 

Therefore the vertical momentum equation is an identity. 

Now we will rewrite the incompressibilty condition (2.3), 

dw (du     dv\ 
dz \dx     dy)' 

8 



Since the horizontal accelerations are independent of z, we can integrate the above 

relationship to get 

, ,. (du     dv\        .        . .     . 
w{x,y,z,t) = -zl — + — J +w(a:,y,<)- (2.9) 

The condition of no normal flow at the bottom requires 

w(x, y, hB, t) = u— h v- 
dx dy 

It naturally follows that 

/ jN     ,, , (du     dv\       dhB       dhB 
w(x,y,z,t)=-(hB-z)^- + -)+u— + v—. 

dz 
The vertical velocity w(x, y, z,t) = — at the upper surface z = h represents the rate 

dh 
at which the free surface is rising. Thus w(x,y,h,t) == — and (2.9) become 

at 

,        ,    .      dh       dh       dh 
w{x,yM = - + U- + V-. 

Therefore 

f+ |l«(*-*»)] + | W»-*B)] = O. 

This equation, combined with the horizontal momentum equations (2.9) form the 

shallow water equations. 

du       du       du dh 
— +Ü7- + U- fv =   -g-Tr- 
at        dx       dy dx 

dv       dv       dv      . dh 
m+uTz + vTry 

+ !u = -^ <210' 

^ + _ [u(/i _ M] + _ [j;(/, _ M]   =   o. 

u, ?-. and h an- called the primitive variables and (2.10) is the primitive form of 

the shallow water equations. 



2.      Vorticity-divergence Form 

For vorticity-divergence, we start with the definitions. The relative vorticity, 

denoted by £, is defined by 

C     =     VX     -     Uy, (2.H) 

and the absolute vorticity, denoted by Q, is given by 

Q = ( + f. (2.12) 

The divergence, denoted by D, is given by. 

D = ux + vy, (2.13) 

and the kinetic energy (per unit mass), denoted by K, is given by 

To get the vorticity-divergence formulation, we start by differentiating the first 

equation of (2.10) with respect to y and subtract it from the second equation of (2.10) 

differentiated with respect to x gives 

vxt + uxvx -f uvxx + vxvy + vvxy + fux + ghxy 

— Uyt   —   UyUx   —   UUxy   —   VyUy   ~   VUyy   +   fVy   ~   gtlXy    =    0. 

Rearranging and cancelling terms will yield 

(VX   -   Uy)t    +   UX(VX   -   Uy)   +   U(VX   -   Uy)x 

+ Vy(VX    -    Uy)    +    V(VX    -    Uy)y    +    f(UX    +    Vy)     =    Ü. 

Rewriting in terms of (2.11) and (2.13) gives 

C< + "xC + <x + ^yC + v(y + fD = 0. 

This can be rewritten in the form 

C« + («0, + K)y + fD = o 

10 

(2.15) 



or 

This is called the vorticity equation. To get the divergence equation, we difffer- 

entiate the first equation of (2.10) with respect to x and add to it the second equation 

of (2.10) differentiated with respect to y gives 

(2.16) 
uxt + «x2 + uuxx + vxuy + vuxy - fvx + ghxx 

+ Vyt   +   UyVX   +   UVXy   +   Vy ^   "f   Wyy   +   fUy    +  gkyy    =    0. 

Again, rearranging terms will yield 

(UX   +   Vy)t   +   U{UX   +   Vy)x   +   V(UX   +   Vy)y + 

UX
2    +   Vy2   +   2UyVX   -   f(VX    -   Uy)    +   Q (II XX   +   hyy)    =    0. 

Using (2.11) and (2.13) this can be further reduced to 

Dt + uDx + vDy + ux
2 + Vy2 + 2uyvx -f(+ ^V^ = 0. 

The vorticity-divergence form of the shallow water equations in terms of rela- 

tive vorticity and divergence are 

C« + («0, + K)„ + fD . = o 
Dt + uDx + vDy + ux

2 + vy
2 + 2uyvx - f£ + gV2h   =   0 (2.17) 

ht + [u{h - hB)]x + [v(h - hB))y =   0. 

To simplify a bit further, we can use (2.11) through (2.14) on (2.15) and (2.13). 

First, rearrange and cancel terms of (2.15) in the following manner. 

Vxt — uyt + uxvx - uyux + fuT + uvxx — uuyx+ 

VyVX    -    VyUy   +    fVy   +   VVXy    ~   VUyy    =    0 

Rearranging further gives 

(VX    -   Uy)t    +   UX(VX    -Uy   +   f)+   U(VXX   -    UyX) + 

Vy{VX    ~Uy   +   f)    +   V(VXy   -Uyy)    =    0. 

11 



This leads to 

Ct + uxQ + uQx + vyQ + vQy = 0, 

or 

& + (uQ)x + (vQ)y = 0. (2.18) 

This can also be written as 

Qt + (uQ)x + {vQ)y = o 

since ft — 0. 

Now we simplify (2.16) in a similar fashion. First, rewrite the equation in the 

following manner. 

Uxt + vyt + ghxx + ghyy + uuxx + uxux + vvxx + vxvx+ 

UUyy   +   UyUy   +   Wyy   +   VyVy   ~   VXVX   +   VXUy    ~   fVx   ~   VVXX + 

VU yx +   UyVX    —   UyUy    +   flly   +   UV Xy   ~   UUyy    =    Ü 

Notice that we added in and subtracted some terms that were alike. Now reduce this 

equation to 

uxt + vyt + ghxx + ghyy + (uux + vvx)x+ 

(UUy   +   VVy)y    —   VXVX   +   VXUy    ~   fVX    ~   VVXX + 

VUyX   +   UyVX   —   UyUy   +   fUy   +   UV Xy   ~   UUyy    =    0- 

Reorganize the terms to further reduce to 

/u2 + v2^ 
t + vyt+ ghxx + ghyy + I —-— I    + 

V / XX 

-   VX(VX   -Uy+f)-   V(VX   -Uy   +   f)      + 
'u2 + v2 

\     9      I v      "      ' yy 

Uy{VT    ~Uy   +   f)+   U(VX    ~Uy   +   f)y    =    0. 

Now us«* tin- definitions of Q and A' to reduce this equation to 

(UX   +   Vy)t    +   g(hXX   +   hyy)    +    KXX    +    Kyy ~ 

vxQ — vQx + UyQ + uQy = 0. 

12 



Thus our equation becomes 

Dt + gV2h + V2K - {vQ)x + (uQ)y = 0. (2.19) 

Combining (2.18), (2.19), and the last equation of (2.10) we have the shallow 

water equations in the vorticity divergence form. 

Ct + (uQ)x + (vQ)y =   0 

Dt+gW2h + V2K-(vQ)x + (uQ)y =   0 (2.20) 

ht + [u{h-hB)}x + [v(h-hB)]v =   0 

C.     SPHERICAL COORDINATES 
1.      Background 

Where Cartesian coordinates locate a point using 3 vectors, spherical coor- 

dinates locate the same point using two angles and a distance. Typically, spherical 

coordinates represent a point in space with an ordered triplet such as (a, (f>, A). These 

variables are related to (x, y, z) by 

x = a sin <f> cos A 

y = a sin (f> sin A (2.21) 

z = a cos <f). 

Let us consider a channel that goes around the whole Earth. In this model, 

let A be the longitude, let (j> be the latitude, let r be the radial distance, let a be the 

average radius of the Earth, and let z be the average sea level. Now, recall equations 

(2.5) and (2.2). 

dt pdx      pdy      pdz 

-f (2iuS2 cos 4> — fv)i + fuj — 2uQ cos 4>k. 

13 



and —* —* 
dV     dV     1^*,^-*   T-».     ,^+     T-*\ 

Using results drawn from Haitiner and Williams (see [Ref.   5]), and neglecting the 

force due to friction, F, gives us 

(du       du       du        du\ -f 
0 = {m+ud-x 

+ vd-y + wd-z)1 

(dv       dv       dv       dv\ ->    (dw       dw       dw       dw\ T> 

dt       dx       dy       dzj        \dt        dx       dy        dz J 

+ {-|^+ \2tt + —^— ) (v sin <f>-w cos <f)\t (2.22) 
[pdx     \ a cos <p) J 

{1 dp /\,_ u \ . , v w 1 -t 
--£ + [2Ü + 7 «sin<£ \j 
pay      \          a cos cpj                  a J 

+ \—£+g+ (20+      "   ,)ucos(f)+ — \k 
[poz \ a cos (pj a J 

Separating along the three axes and we have 

du       du       du        du     1 dp     / _, u    \       . . 
0 = -77- + u— + v— -f w— + —r 2S2 H     (z> sin <p - w cos </>) 

0/        ax        dy        dz     pdx      \ a cos <pj 

dv       dv       dv        dv     1 dp     / _ u    \     .    ,     vw ,n nn. 
° = -^ + uir + vjr + w7r + -7r+ \2n + i  usin<£ (2-23 

dt        dx       dy        dz     pdy     \ a cos <pj a 

dir       dw       dw        dw      1 dp / . ti    \ v2 

0 = — + i/^- + u7r- + ti;^- + -^:+^+   20 + -   ucos^+ — 
at ox        dy dz      pdz \ a cos <pj a 

.. . ... , r .   1 9p ,    1 5p . . . r      9/i 
Note that p is independent ot 2, and — — and —— can be written in terms 01 #— 

pdx p dy dx 
.    dh .1*1 1 

and <7— respectively. Also note that 
dy 

du du d\     du d(f> 

dx d\ dx     d<t> dx 

du 1 du 1 
+ 

d\ — as'm<f)s'm X      d(j) a cos <f>cos X 
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and similarly for the other partials. Substituting these and the Coriolis parameter, 

/ = 2Ü sin 0, into (2.23) gives us the shallow water equations in spherical coordinates. 

(See [Ref. 7].) 

du 1 

dt      a cos 9 
du .du 

udx+vcos0-dl f + - tan 9 
a 

v + 
9     dh 

a cos 0 dX 
0 

dv        1 
dt      a cos 6 

dv ndv 
udx + vcoseT9 + u 

f + - tan 6 
a 

9 dh 
ado 

(2.24) 

dh 1 
dt      a cos 9 

= o. 

Numerical approximations of the shallow water equations in spherical coordinates are 

given for example by Türkei and Zwas (see [Ref. 8]) and Arakawa (see [Ref. 9]) et 

al. Analysis of the schemes were given by Neta and Navon (see [Ref. 10]) et al. 

Navon and de Villiers et al. have applied the Turkel-Zwas scheme to a hemispheric 

barotropic model (see [Ref. 11]). 
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III.        LINEARIZATION 

In this chapter, we will see how to linearize the shallow water equations in 

Cartesian and spherical coordinates. The Cartesian coordinate case starts with either 

the primitive or the vorticity-divergence formulation. 

A.     TWO DIMENSIONS 
1.      Basic Formula 

First separate each of the three variables into the average which we can consider 

constant plus the perturbation in the variable. This should look like: 

u = U + it' 

v = V + v' (3.1) 

h = H + h! 

where the capital letters are used for the average or mean values and the primed 

variables are the perturbations. Now substituting this into (2.7) and omitting all the 

second order terms gives 

at ox ay ox 

<)v'     t,dv'     „dt/     rTr     t ,       d(H + h') 

f^ + £\u\H-hB)] + ^[v\h-hB)] + (U + V)^[H + h'-hB)   =   0. 

(3.2) 

For simplicity and without loss of generality we sometimes consider a zero 

mean flow. i.e.   L' = V = 0.   This and dropping the primes will give the linearized 

form of the shallow water equations which follows. 
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du dh 

9v dh 

dh     ,TT     ,   , (du     dv\ _ + (fl_fcB)(_ + _j=o. 
If topography is not considered, then the linearized shallow water equations 

can be written 
du dh 

dv dh 
m+fu + % = ° 
dh (du     dv\ _ 
dt \dx     dy) 

This can also be written as 

ut — fv + ghx       =   0 

vt + fu + ghy       =   0 (3.3) 

ht + H(ux + vy)   =   0. 

Another source for the development of the linearized shallow water equations is Gill. 

(See [Ref. 4]). 

2.      Vorticity Divergence Formula 

The two dimensional linearized vorticity divergence form of the shallow water 

equations is obtained by using (2.8) and (2.9) on (3.3). It should be noted that 

the linearized vorticity divergence formula can be found linearizing (2.16) or (2.19). 

Taking the partial differential of the first equation of (3.3) with respect to y and 

subtracting it from the partial differential of the second equation of (3.3) with respect 

to x yields 

Vtx + fux + ghxy - uty + fvy - ghxy = 0. 
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With a little algebra this equation can be rewritten as 

(vx - uy)t + f(ux + vx) = 0. 

which when using the definitions of ( and D reduces to 

Ct + fD = 0. (3.4) 

This is the first equation of the linearized vorticity divergence form. By taking the 

partial of the first equation of (3.3) with respect to x and adding it to the partial 

differential of the second equation of (3.3) with respect to y we get 

utx - fvx + ghxx + vty + fuy + ghyy - 0. 

With a little algebraic simplification our equation becomes 

(UX   +   Vy)t   -   f(Vx   -   Uy)   +  g(hXX   +   hyy)    =   0. 

Again, using the definitions of ( and D, this reduces to 

Dt-f( + gV2h = 0. (3.5) 

(3.4) and (3.5) along with the last equation of (3.3) form the two dimensional lin- 

earized vorticity divergence form of the shallow water equations. 

Ct + fD =   0 

Dt-f( + gV2h   =   0 (3.6) 

ht + H(ux + vy)    =   0 
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B.     LINEARIZED SHALLOW WATER EQUATIONS IN 
ONE DIMENSION 

with 

In the one dimensional case, all dependence on y is eliminated and we end up 

du dh 

dh     „ (du\     „ 

or more simply 

ut — fv+ ghx = 0 

vt + fu = 0                                               (3.7) 

ht + Hux = 0. 

C.     SPHERICAL 

To linearize the spherical version of the shallow water equations, simply take 

(3.1) and substitute it into (2.26). The resulting equation follows quite easily once 

all second and higher order terms are omitted. 

du g     dh 
at a cos 9 dX 

dv      .       gdh 

at add 

dh        H    (du      d ,        m\     n 
7T7 + a    77Y + *i "«)S0     = 0. dt     a cosy \dX     00 J 

Not in- that the linearized equations have nonconstant coefficients. This complicates 

tin- linear stabilty analysis. See Longuet-Higgins [Ref. 1] and Neta [Kef. 12] et al. 
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IV.        APPROXIMATIONS 

A.     FINITE DIFFERENCES 
1.      Introduction 

One of the first steps in using finite difference methods is to replace the con- 

tinuous problem domain by a difference mesh or a grid. Let f(x) be a function of 

the single independent variable x for a < x < b. The interval [a, 6] is discretized by 

considering the nodes a = x0 < x\ < ■ • ■ < x^ < XN+I = b, and we denote f(x{) by 

fi. The mesh size is £J+1 — Xi and we shall assume for simplicity that the mesh size 

is a constant 
,       b — a 
h 

N + l 

and 

X{ = a + ih       i = 0,1, • • •, TV + 1 

In the two dimensional case, the function f(x,y) may be specified at nodal 

point (xi,yj) by fy. The spacing in the x direction is hx and in the y direction is hy. 

Taylor series expansions of functions in several variables play an important 

role in formulation and classification of finite difference methods. The Taylor series 

expansion for /,-+i about the point X{ is given by 

fi+> = fi+hf'i+^ti'+^n'+--- 

The Taylor series expansion for /,+iJ+i about the point (xt-,j/j) is given by 

h2 h2 

fi+i  j+\     =    fij    +    (hill   +   hyfy)ij   +    (y/n   +   hXhyfXy   +    — fy y ),' j   +    '   ■   • 

2.      Finite Differences 

Using text drawn from Neta (see [Ref. 13]), we will cover certain aspects of 

finite differencing. An infinite number of difference representations can be found for 

the partial derivatives of f(x,y). Let us use the following operators: 

Axfij — fi+if — fij    Is' forward difference operator 
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Note that 

Vxfij = fij — fi-ij    Ist backward difference operator 

Sxfij = fi+ij — fi-ij    centered difference 

Ox fij — fi+l/2j — fi-l/2j 

y-xfij = (fi+i/2j + fi-i/2j)/2    averaging operator 

Ox — /djJjxOx' 

In a similar fashion we can define the corresponding operators in y. 

In the following table we collected some of the common approximations for 

the first derivative. 

Table I. First Derivative Approximations 
Finite Difference Order 

(See Chapter IV Section A 3) 

rAr/fj o(hx) 

r**f» °(M 
57-^/i, O(hl) 

^H-Vv + 4/I+lj - fi+v) = j-(Ax - \&x)k 0(hl) 

^-(3ftJ - Afi.u + fi.2j) = j-(Vx + ±V»)/y Ojjil) 

■^M - ^Hrfyfij 0(h3
x) 

1 Mi, 
2hT 1 + 1% 

0(h 

The compact fourth,order three point scheme deserves some explanation. Let 

fT lie ?', then the method is to be interpreted as 
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or 

g (Vi+ij + 4vij + Vi-ij) = 2jf$xfa ■ 

df 
This is an implicit formula for the derivative — at (x,-, t/j). The u„ can be computed 

from the fa by solving a tridiagonal system of algebraic equations. 

The most common second derivative approximations are 

fxx\ij = T^ifij ~ 2/i+lj + fi+2j) + 0{hx) 

fxx\ij = T^ifij — 2/i-lj + fi-2j) + 0(hx) 
x 

Jxx\ij = T~2^xJ^i + O(hl) 

JXXUJ        »21,    In + 0(ht). 

Remarks: 

1. The order of a scheme is given for a uniform mesh. 

2. Tables for difference approximations using more than three points and 

approximations of mixed derivatives are given in Anderson, Tannehill and Pletcher 

(see [Ref. 14]. 

3. Difference Representations of PDEs 

a. Truncation Error 

The difference approximations for the derivatives can be expanded in 

Taylor series. The truncation error (T.E.) is the difference between the partial deriva- 

tive and its finite difference representation. For example 

hx 
fx - — Axfij = fx 

ij        R-x 

Ji+lj Jij   _ r 
i —      Jx 

■■ 2' 

We use 0{hx) which means that the truncation error satisfies \T. E.\ < K\hx\ for 

hx -> 0, sufficiently small, where K is a positive real constant. Note that 0(hx) does 

not tell us the exact size of the truncation error.   If another approximation has a 
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truncation error of 0(h2
x), we might expect that this would be smaller only if the 

mesh is sufficiently fine. 

We define the order of a method as the lowest power of the mesh size in 

the truncation error. Thus Table 1 gives first through fourth order approximations. 

The truncation error for a finite difference approximation of a given 

PDE is defined as the difference between the two. For example, if we approximate 

the advection equation 

by centered differences 

OF       dF     n 
— + c— = 0 ,    c > 0 
at       ox 

Fij+l       Pij-1    ,      -Tj+lj       fj—lj  _ |-| 

2At 2Ax 

then the truncation error is 

T   F   - (— -u   — ^    - Fij+1 ~ Fii~x -   Fi+lj ~ Fi~lj 

~{dt        dx).. 2At 2Ax 

1       d3F      1       d3F 
= —At2--—— c-Ax2——- — higher powers of At and Ax 

6       ot6       6        oxd 

. We will write 

T.E. = 0(At2,Ax2). 

b. Consistency 

A difference equation is said to be consistent or compatible with the 

partial differential equation when it approaches the latter as the mesh sizes approaches 

zero. This is equivalent to 

T.E. —>■ 0    as mesh sizes     —> 0 . 

c. Stability 

A numerical scheme is called stable if errors from any source (e. g. trun- 

cation, rouml-off. errors in measurements) are not permitted to grow as the calculation 

proceeds. Rirhtmryer and Morton give a less stringent definition of stability (see [Ref. 

15]). A scheme is stable if its solution remains a uniformly bounded function of the 

initial state for all sufficiently small At. 
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d. Convergence 

A scheme is called convergent if the solution to the finite difference 

equation approaches the exact solution to the PDE with the same initial and boundary 

conditions as the mesh sizes apporach zero. Lax has proved that under appropriate 

conditions a consistent scheme is convergent if and only if it is stable. 

The Lax Equivalence Theorem states that given a properly posed linear 

initial value problem and a finite difference approximation to it that satisfies the con- 

sistency condition, stability is the necessary and sufficient condition for convergence 

(see [Ref. 15]). 

4.      Further Examples 

Given a PDE and a finite difference mesh one can use any of the following 

procedures to develop a finite difference scheme. 

a. Tables 

b. Taylor series expansions 

c. polynomial fitting 

d. integral methods 

e. control volume techniques. 

One may get the same scheme by using different approaches. As an example 

for procedure b we develop a three point second order approximation for —— on a 

df 
nonuniform mesh. — at point O can be written as a linear combination of values of 

ox 
f at A, 0, and B, 

f£    =Cif(A) + C2f(0) + C3f(B). 
OX O 

A 4" O     aAX B 

Figure 1. Nonuniform mesh 

We use Taylor series to expand f(A) and f(B) about the point O, 

f(A) = f(0 - Ax) = f(0) - Axf'(O) + ^f-f'(O) - ^/'"(0) ± 
Z o 
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f(B) = f(0 + aAx) = f(0) + aAxf(O) + 
2A.2 a2Ax 

f"(0) + 
3A„3 a3Ax f"{0) + 

Thus 

dx 
df 

= (C1 + C2 + C3)f(0)   +   (aC3-Cr)Ax 
O OX  Q 

Ax3 d3f 

+ (Ci + a'C3) 
2„,Ax282f 

2   dx2 

6   dx3 + 

This yields the following system of equations 

Ct + C2 + C3 = 0 

1 
-Ci     + aC3 Ax 

d     + a2C3 = 0 

The solution is 

C,= 
a 

(a + l)Aa:' 
C2 — —T—,    C3 — 

aAx a(a + 1)A:E 

and thus 

df = -a
2/Q4) + («2-l)/(0) + /(i?) + «Aa;2^/ 

dz ojfa + DAa: 6 dx3 + 
a(a + l)Aa; 

Note that if the grid is uniform then a = 1 and this becomes the familiar centered 

difference. 

5.      Irregular Mesh 

It is more convenient to use a uniform mesh and it is more accurate in some 

cases. However, in many cases this is not possible due to boundaries which do not 

coincide with the mesh. In this case several possible cures are given in [Ref. 14]. The 

most accurate of these is a development of a finite difference approximation which is 

valid even when the mesh is nonuniform. It can be shown that 

2 
u. 

o      (1 + a)hx 

uc — Uo       uo — UA 

ah. ha 

Similar formula for uyy.   Note that for a = 1 one obtains the centered difference 
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ßAy 

Ax      O aAx '  C 

Ay 

& 

Figure 2. Irregular mesh near curved boundary 

approximation. 

Due to the need to refine the mesh in some of the domain to maintain the 

accuracy one is advised to use a coordinate transformation which is covered in Neta 

(see [Ref. 13]). 

6.      Stability 
The problem of stability is very important in numerical analysis. There are 

two methods for checking the stability of linear difference equations. The first one 

is referred to as Fourier or von Neumann and assumes the boundary conditions are 

periodic. The second one is called the matrix method and takes care of contributions 

to the error from the boundary. 

a.        von Neumann analysis 

Suppose we solve the advection equation 

9F     „dF     n -^7 + C-x- = 0,    c>0, 
at        ox 

by Lax method (see [Ref. 13]) 

%H = 2^+ii + F'-ii) _ C2Ä^F,+Ij ~ F*~1^ ' 
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If a term (a single term of Fourier and thus the linearity assumption) 

Vij  — C     C 
CLX —.^/CrriS? 

is substituted into the difference equation, one obtains the amplification factor 

where 

e    = cos ß - iv sin ß 

v — c——        Courant number 
Ax 

The stability requirement is 

and implies 

ß — kmAx. 

eat  < 1 

M<i 

This is called the Courant-Friedrichs-Lewy (CFL) condition. 

6. Matrix method 

Suppose again we solve the advection equation using Lax method but now we assume 

periodic boundary conditions, i. e. 

" m+ln —   "in 

The system of equations obtained is 

where 

2_n+l = AF 

F\n 

£n = 

1 run 
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A 

l-i/ 

0 

0 0 
1-1/ 

1-1/ 

1 + // 

0 
1 -v 

1+v 

It is clear that the eigenvalues of A are 

\ 27T .   2ir 
Xj — cos —(j — 1) -f- ivsm — 7 — 1),     7 = 1, • • • , m. 

Clearly the stability of the method depends on 

\9{A)\<\. 

Note that one obtains the same condition in this case. The two methods yield identical 

results for periodic boundary condition. It can be shown that this is not the case in 

general. See work by Hirt (see [Ref. 16]), Warming and Hyett (see [Ref. 17]) and 

Richtmeyer and Morton (see [Ref. 15]). We will explore the stability of the shallow 

water equations in more detail using Fourier techniques in the next chapter. 

7.      Example: Shallow Water Equations in 2D 

Arakawa and Lamb ([Ref. 18]) have investigated a finite difference scheme for 

the nonlinear shallow water equations using square and staggered square grids. We 

will show two of their examples, one of a square unstaggered grid, and one example 

of a staggered square grid. For more information on finite difference schemes, refer 

to their work. [Ref. 18] 
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a. Square Grid 

Recalling the linearized version of the shallow water equations 

du dh 

dv dh 

Tt+fu + % = ° 

dh     rr (du     dv\ 

«+Ä(&+äSj=0' 
Arakawa and Lamb (see [Ref.  18]) use the following finite difference approximation 

for the unstaggered square grid. 

^+" ((s^r + (v)s) = o 

where (5xh)x = —(hi+ij — /i,-_ij), in our notation this is /J,x5xh. 

b. Staggered Square Grid 

In simulation, according to Arakawa and Lamb (see [Ref. 18]), a stag- 

gered grid approach is best. The reason that a staggered square grid is better for 

modelling shallow water flow than an unstaggered square grid is that for the same 

time step, the staggered grid will give higher levels of accuracy. Now let us look at 

Arakawa and Lamb's example of a staggered square grid. Recalling the shallow water 
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equations (2.10). 
du       du       du dh 

dt       dx       dy dx 

dv       dv       dv dh . 

m+Ud-x+Vdy- + fU      =   ~9Ty (41) 

9h     d , ..      d , ,. 

Notice that we substituted h for (h — hß) therefore ignoring the bottom topography. 

For the staggered grid, following Arakawa and Lamb's example (see [Ref. 18]), multi- 

ply the first of (4.1) by h and add it to the last of (4.1) multiplied by u, also multiply 

the second of (4.1) by h and add it to the last of (4.1) multiplied by v. This gives us 

hut + huux + hvuy — fhv + ghhx + uht + u(hu)x + u(hv)y = 0 

hvt + huvx 4- hvvy + fhu + ghhy + vht + v(hu)x + v(hv)y = 0. 

This reduces to 

(uh)t + (huu)x + (hvu)y — fhv + ghhx = 0 

(vh)t + (huv)x + (hvv)y + fhu + ghhy = 0. 

This is another useful form of the momentum equations.  Now multiply the first of 
u2 

(4.1) by uh and add it to the last of (4.1) multiplied by —, also multiply the second 

V2 

of (4.1) by vh and add it to the last of (4.1) multiplied by —. This gives us 
Li 

uhu, + hu2uT -f huvuy — fhuv + ghuhx + —ht + —{hu)x + —{hv)y = 0 
LJ Li LJ 

1J 1) 1) 

vhv, + hvtivT + hv2vy -f fhvu + ghvhy + —ht + —(hu)x + —{hv)y — 0. 

This now reduces to 

u2\       (,    u2\        (,   it2' 
/'_2~j   +[huJ)   +[hvYl   ~fhuv + 9uhhx = 0 

(4.2) 
v2\       (,    v2\        (,   v2^ 

h—)+\ hu~ I   + I hl)— I   + fhuv + 9vhhy = 0. 2/*     V      2 7        1      2. / f \ / x \ / y 
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This gives the equation for the time change of kinetic energy according to Arakawa 

and Lamb (see [Ref. 18]). If we multiply the last of (4.1) by gh, we get 

gh [ht + (hu)x + (hv)y\ = 0 

or 

[gy )   + (9h2u)x + {gh2v)y - gh(uhx + vhy) = 0. (4.3) 

Note that the Coriolis force does not contribute to the change in total kinetic energy. 

Also note that the sum of terms in (4.2) and (4.3) is zero. It then follows that we 

have conservation of energy which can then be used in the construction of the finite 

difference scheme. 

Arakawa and Lamb's choice for the differencing of the continuity equa- 

tion (see [Ref. 18]) was decided in an effort to keep it as simple as possible. At h 

points, the last equation of (4.1) can be represented as 

(M, + J, [Fi+ij ~ F^y + GiJ+k - %_i] = 0 

where 

,3 
Fi+hj = d[hyu]i+h 

GhjH ^ #Hj+i 

arc the mass fluxes and are defined at u and v points, respectively. This is semidiscrete 

therefore the time change terms will be left in differential form. 

For the finite difference scheme, the total kinetic energy is conserved 

dtirinp the inertial process. Therefore the terms 

(uh)t -f (huu)x + (hvu)y 

ran lie written as follows. 

4(w,u,«).J- + 4K(^
(,,,

ü') + SyigMü») + M^
U
>ü*') + sV'(ö

lu)uy')\..    (4.4) 
dt ai l il<3 

We will use Arakawa and Lamb's reasoning to define //<">, T(u\ Q(u\ PUK and £<u> 

in the next few paragraphs (see [Ref.   18]).   (i,j) are used as the indices and are 
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chosen in such a way that they satisfy 

d 1 
-H\y + - 8xT

{u) + 6ygM + 5x,f^ + 5y,gM 
at d2 

*ij 

(4.5) 

Now multiply (4.5) by U{j and subtract it from (4.4), we will get 

1 u) duj 
hj   dt   ' d2 L" 

JJ(U)WZ,3  _^_ 
FM5xu* + gMSyuv + f^'^K1' + QWS'yuy' (4.6) 

JM 

1 
Take (4.6) and multiply it by u,j and add it to (4.5) which is multipied by -u- and a 

finite difference analog of the first three terms of the first equation of (4.2) is obtained. 

The finite difference analog is written the same as Arakawa and Lamb wrote it and 

is as follows (see [Ref. 18]). 

1JX2 >J      2 

-£•(«) rH 
'T2"T2 2"      2 

;(«) ^(«) 
+ &,-_i ,-+iw.-j«i-ij+i - yi+i .■_i"«+ij-iwt,i 

2'-'~2 I~2'-/     2 

Notice that in this equation, the kinetic energy flux term appears twice, but with the 

opposite sign the second time. The definition of these terms is not dependent on the 

form of the equation as long as the total kinetic energy does not increase or decrease 

over the domain. 

The Coriolis term —fhv can be represented at u,j by 

and fhu at vi+i  +i by 

-fi(hvyX)ij 

(fh&y)i+ij+i 
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The pressure gradient terms ghhx and ghhy can be represented as g[hx8xh]ij and 

g[hySyh]i+i +i respectively. This is a general momentum advection scheme for non- 

divergent flow to a scheme that will maintain conservation of total energy and also 

maintain the divergent flow. Horizontal errors due to discretization should be small 

on the planetary scale due to the large size of the system relative to the grid size. 

For a more detailed rendition of this example, refer to Arakawa and Lamb (see [Ref. 

18]). Neta and Lustman generalized this to nonuniform grid (see [Ref. 19]) . 

B.     FINITE ELEMENT 

In the finite element methods (FEM), the domain is divided into subregions 

railed finite elements, hence the name. The unknown function u is represented as the 

interpolating polynomial in each element. This representation is continuous along 

with its derivatives (to a certain order) in each elment. 

1.      Basic Concepts 
One of the ways to formulate the finite element is via the so called weighted 

residuals method. In this method, the desired function u is replaced by a finite series 

N 

3=1 

The set of functions <j>j are called basis functions. Clearly one can. not expect uh to 

satisfy the partial differential equation, 

Lu = f. 

The residual R is defined as 

R = Luh -f. 

In order to obtain the undetermined coefficients Uj, one sets the weighted residuals 

to zero, i.e. 

[Rwi = 0 x = 1,2,..., TV 
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where the weights W{ may be chosen in various ways. If the weights are chosen to be 

the same as the basis functions, one obtains Galerkin's method. For collocation, the 

weights are Dirac delta functions. In the subdomain method one uses the character- 

istic function of each subdomain as the weight, i.e. Wi — 1 in the subdomain fi; and 

zero elsewhere. 

Example 

Given the equation 

-— +u+x=0 0 < z < 1 
ax* 

with homogeneous boundary conditions 

u(0) = «(1) = 0, 

we suppose that we can approximate u(x) by 

uh = ax<j)i(x) + a2<f>2(x) 

and let the basis functions be 

<j)\ = x{\ — x) 

(4.7) 

<f>2 = X2(\ — x). 

Notice that each basis function satisfies the boundary conditions and therefore uh 

satisfies those also. The residual is 

(Puh 

R = -r-r + uh + x = {-2 + x- x2)ai + (2 - 6x + x2 - x3)a2 + x. (4.8) 
(IT* 

The rolloration method yields (using X\ = \,x2 — \ as collocation points) the 

following two «>(|uations for the unknowns ax and a2. 

16°»  ~ 64°2     -      4 

Ja, + Ja2      =    | 
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The approximate solution is then 

42 + 40z 
uh = x(\ - x)- 

217 

The subdomain method yields the following system when the interval is sub- 

divided into two. 

/2 Rdx =   0 
Jo 

/: 
Rdx =   0 

11 53 1 
"l2ai_T9202   ~   "8 

11 229 3 
12ai~192a2   -   "8 

97 
aa 

(4.9) 

0,2 

517 

88 
517 

h n       x 97 +88a; 
=   *(l-*)-5iT- 

For Galerkin's method we have the following two integrals to evaluate. 

/  Rfadx   =   0 
Jo 

(4.10) 

/ Rfadx   =   0 
Jo 

with 
3 3 1 
 Gh H Go        =       
10  '     10  2 12 

3 13 1 
10   '      105  2 20 
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where 

ai    = 

a2    = 

71 

369 

7_ 

41 

u w 71       7   N rc(l — ^Jlrrx + —#) 
369     41 

The accuracy of the approximate solution depends on the choice of the basis 

functions and the method used. 

2.      Weak Formulation 

The fundamental integral statement of the finite element methods can be in- 

terpreted as a combination of a weighted residual and a process of integration that 

reduces the order of continuity required. Going back to the previous example 

d2u 

dx2 + U + X =   0 

M(0) = M(1) 

uh = ai<j)i(x) + a2(/)2(x) 

=   0 

/' Jo 

d*u 

dx2 + u + x (ßidx 

Integration by parts yields 

/*     du d<t>i du 
J       d~~d~ +        +X(Pi)dx + —(pi 

x' = l,2 

(4.11) 

= 0 1,2 

It is in this weak form that one substitutes the approximate solution.   Notice that 

<p,(0) = o,( 1) = 0 and thus the boundary term vanishes. 

3.      Choice of Basis Functions 

The accuracy of the methods of weighted residuals depends mainly on the 

choice of basis functions. In the previous example, we have chosen polynomials. We 

37 



now introduce several possible piecewise polynomials.   The simplest polynomial is 

piecewise constants. 

a.        Piecewise Constant 

a   xe(xi_1,xi+1) 

4>i(x) = < 

0      elsewhere 

b.        Piecewise Linear 

<ßi(x) 
Xj+1 — x 

"^%—-1   ^^   *L>   ^^   Ju% 

Xi < X < Xi+i 

0 elsewhere 

c. Piecewise Quadratic 

For higher order, it is easier to introduce a nondimensional coordinate 

£ where ( — 1 < £ < 1). This choice facilitates numerical integration by Gaussian 

quadratures. 

uo =    i-e2 

MO =  jeo + e) 
The subscript indicates the point £ at which 4> is one. o is zero at the 

other two points as shown in the following figure. 
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Figure 3. Piecewise quadratic basis functions 

d.        Piecewise Cubic 

It is easy to see that piecewise cubic basis functions are given in the 

nondimensional coordinate £ by 

<M0 = Ul~0(H2-i) 

<M0 16 (3£-l)(£2-i) 

^(0   =   -4(3^ + 1)^-1) 

MO  =  i(i + 0(9^-i). 

The above basis functions interpolates along the element using a Lagrange third order 

polynomial. Another choice is the Hermite polynomial. In addition to continuity 

of second derivatives over the element, one has first derivative continuity between 

elements. Therefore Hermite polynomials interpolate the derivatives also. This is 

useful, for example, in flow problems where one has to differentiate the potential to 

obtain the velocity field. 
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Each node is identified with two basis functions. 

<hi   =   l(l-02(£ + 2)      ^oi(-l) = l,^oi(l) = ^1(±l) = 0 

<fc)2   =   -i(l+02(e-2)   ^o2(l) = l,M-l) = ^o2(±l) = 0 

<f>n = !(i-o2(e+i) 

<f>u i(i + o2(e-i) 

on = 4>'ij 
dt 

B     -0 6     -0.4     -0.? 0 0.2        0 4        0.6        0.8 

Figure 4. Piecewise cubic basis functions 

4.      2D Basis Functions 

It is very easy to extend the method of weighted residuals to higher dimensions. 

In this section we discuss several possibilities of basis functions for rectangular and 

triangular elements. We close by discussing isoparametric finite elements (irregular 

quadrilateral elements). 

a.        Rectangles 

As in one dimension, one can present Lagrangian and Hermitian basis 

functions.  The Lagrangian basis functions are obtained when a product of two one 
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dimensional basis functions are used. We will use a quadratic for this example. 

<h =   ^(1-0(1-7?)   (■ -1,-1) 

h = -ai-ew-ri) (o,-i) 

h   =   -\tri(l+t)(l-ri) (1,-1) 

<t>* = -K(i-0(W) (-1,0) 

<h   =     (1 - fKi -1/2) (0,0) 

& =   Jf(i+0(i-?2) (1,0) 

h   =   -iW-W+ri) (-1,1) 

<f>s   =     i(l ~ P)V(1 + I) (0,1) 

<h   =     3^(1+ 0(1 +V) (1,1) 

E-1.1)                                                          (0.1) p.i) 

(-'.0 • (0.0) PO 

l-'-'l                                                                CO-*) 

Figure 5. Nodes associated with a recte 

(1.1) 

mgular element 

The 9 nodes associated with the rectang ;ular element are shown in the 

figure above. <£,- is the basis function having a value of one at the point listed next to 

its definition and zero at the other 8 nodes. 
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It is easier to write the basis functions by distinguishing between corner 

nodes, side nodes, and interior nodes. 

Quadratic: 

Corner node \ f &• (1 + £&) W; (1 + rjrji) 

Side node,        & = 0 fW,(l + Wi)(l - £2) 

Side node,       7?t-= 0 ±&(1 +&)(1 - »72) 

Interior node (1 — £2)(1 - f?2) 

Linear: 

J(i+w)(i + «0 
Another possibility, which preserves the properties of the Lagrangian 

basis functions, but eliminates the interior nodes are called serendipity basis functions. 

For example, in the case of the quadratic: 

Corner node \(1 + f£)(l + »w)(f& + W - 1) 

Side node,       £ = 0 ±(1 - £2)(1 + TO) 

Side node,       ^ = 0 f (1 - ?72)(1 + &•) 

The cubic and Hermite cubic can be found for example in Lapidus and 

Pinder [Ref. 20]. 

b. Triangles 

The triangular element is the most well known. It allows more accurate 

presentation of an irregular domain than the rectangular element. A natural repre- 

sentation, railed area coordinates system was introduced to simplify the integration. 
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Figure 6. Area coordinates 

Each coordinate Li is denned in terms of the triangle sub area whose 

base is the line L; = 0 and the vertex is the point /,• = 1, thus 

Lt~ A 

where A{ are the areas of the subtriangles and A is the area of the whole element. 

Clearly A = Ai + A2 + A3.  Also clear is the Li is unity at node i and zero at the 

other two nodes. For example L{ = 1 if P(x,y) coincides with the vertex (zi,2/i) and 

it is zero if P coincides with either of the other two vertices. 

Note: 

U + L2 + L3 = 1 

X L™1L2
n2L™3dxdy = 2A- 

mi!?^!^! 

IT * (roj + m2 + m3 + 2)! 

where THJ, m2, m3 are nonnegative integers. 

dLidL, 1 
IT ~dy~~dy~      y = 4Ä^i+2 ~ Xi+1>(x>+2 ~ x>+1' 

IT ~d^^dxdy = ÄA{yi+i ~ J/,+2)(^+1 " y^] 

where / and j are cyclic for 1 < i.j < 3. 

In many cases one requires or prefers numerical integration.  We will 

not discuss this matter, but the reader is refered to Connor and Will (see [Ref. 21]), 

Brebbia and Connor (see [Ref. 22]) et al. 
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For quadratic basis functions, one requires three more nodes per ele- 

ment and these are taken as midpoints of each side. The six basis functions in area 

coordinates are 

AL\ - U 

4LiL2 

2L2 — L2 

4L2L3 

2L3 — L-i 

4L3Li. 

Several possible higher order triangular elements can be found in Fe- 

lippa [Ref. 23], Lapidus and Pinder [Ref. 20], and Zienkiewicz [Ref. 24] and others. 

c.        Isoparametric 

In the Isoparametric finite elements, all irregularly shaped elements are 

mapped onto regular elements in order to help with the integration. 

Examples 

1. Any quadrilateral with straight sides can be mapped onto a square 

whose vertices are at (±1,±1). 

2. Any quadrilateral with curved sides can be mapped onto the same 

square. 

3. Any quadratic triangle with curved sides can be mapped onto an 

equilateral triangle. 

It can be shown the the mapping from the irregular shape in x, y coor- 

dinate to £,7/ is given by 

y =  iZxViMM 
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where (xi,yi) are the vertices of the quadrilateral and <f>i(£,rj) are the basis functions 

of the appropriate order, (in the first case the fa are linear.) 

The evaluation of integrals require the Jacobian of transformation J. 

J   = 

Isoparametric elements of higher order can be found in Lapidus and 

Pinder [Ref. 20], Zienkiewicz [Ref. 24] and others. 

5.      3D Basis Functions 

The extension to three dimensions is straight forward if one has hexahedral 

elements either Lagrangian or serendidpity (no nodes in the interior). One can also 

use tetrahedral or pentahedral elements. 

" dx dy 
dt dt 

dx dy 
. dr) dr) 

8 7                                                     ,_ 

A 
'6 ! 

■ 4 3 

2 

.3 

Figure 7. Three Dimensional Elements 

Tables for serendipity type can be found in Zienkiewicz [Ref. 21]. Verge [Ref. 

25] et al. Area coordinates are replaced by volume coordinates. 
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6.      Example: Shallow Water Equations in 2D 
In this section, we give an example of solving the shallow water equation using 

finite elements. We will ignore the bottom topography. The shallow water equations 

in vorticity divergence formulation are (as one may recall from Chapter 2) 

C* + («<?), + (vQ\ = o 

Dt + gV2h + V2K-(vQ)x + {uQ)y   =   0 

ht + [uh]x + [vh]y =   0, 

where h is the geopotential height, u the east/west component of the wind, v the 

north/south component of the wind and / is still the Coriolis parameter. Hinsman 

(see [Ref. 26]) shows that the equations can be discretized using finite elements as 

follows: 

7(* dVj_dVi , z.dVjdVi ,  4>jVjVi 
dx da + ^ dy dy + $(A<) 'At)2)    J . kfaM-k'te Vi 

-I U{uQ),V,-k,a-^ Vi + 
[ i   (,, , du   ,, . ay;',,. 

dx dy 

(4.12) 

/( 

dj^d^dVi.     dijij dVj dVj 
dt   dx dx       dt  dy dy --ih%)vt-ih%)* 

-i 'fyodV^W     dxidV^W     dj^d^dV^     d^dVjdVj 
dt  dx dx       dt  dy dy       dt  dx dx       dt  dy dy 

(4.13) 

/| (i»Q),v, - *,f) v( -jiy((«Q),v, - %f) v. -fhu,viVi 
N 

(4.14) 
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2  N     du t dv   _j d<f> 
Divergence (V x) — TT + ~K~ and TT~ 

= ~ufo along the boundary walls. For further 
ox     ay ay 

look at this example see [Ref. 26]. We have used Vi for the basis functions in order 

not to confuse it with the geopotential height. Note that (4.13) and (4.14) are time 

dependent. Also note that Hinsman is using a leap-frog time discretization to obtain 

each next time step. Leap-frog requires an additional starting value obtained by the 

Matsuno scheme. (See [Ref. 5].) 
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V.        STABILITY ANALYSIS 

Before getting into the stability analysis of the shallow water equations, this 

paper shall review some basics about integral transforms by focusing on the Fourier 

transforms. Integral transforms are applied in mathematical type operations by tak- 

ing an equation which is unsolvable (or really hard to solve) in its original form and 

transforming it to an equation that is algebraically solvable. Generally, the harder 

the original problem is to solve, the harder the inverse transform is to find. This 

chapter will not go into the nitty-gritty of integral transforms, but will offer some 

insight into why and how they work before applying transforms to the problem at 

hand. For more information on integral transforms see Miles [Ref. 27]. Simply put, 

an integral transform is of the form T(p) = fa A'(p, x)f(x)dx where the function to 

be transformed is /(a;), and K(p,x) is the transforming function which is known as 

the kernel of the transform. 

A.     ONE DIMENSION 
1. Fourier Transform 

The Fourier Transform in one dimension is 

/(*) = T{f{x)) =  r e-ikxf(x)dx. 
J—oo 

Also, recall that the inverse Fourier Transform is 

/(*) = ^ (/(*)) = {£) /" f(k)eik*dk. 

2. Shallow Water Equations 

Schoenstadt (see [Ref. 28]) studied the effect of replacing the spatial deriva- 

tives in a dispersive wave equation by using Fourier transform techniques. We will 

repeat some of his work here, but for a more in depth understanding, the reader 

should consult the original text. Let us consider the effect of semi-discretization on 
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the solution of a shallow water type model. The shallow water equations in a one- 

dimensional linearized form with no mean flow, as one may recall from Chapter 3, 

are 
ut — fv + ghx   =   0 

vt + fu =   0 (5-1) 

ht + Hux =   0. 

Now if we use the Fourier transform on these equations, (hats (") symbolize Fourier 

transforms), we arrive at 

ut   —   fv — ikgh 

vt    =   -/« 

ht   =   —ikHü 

The initial conditions are 

üo = u(k, 0) = Ho u(x, 0)e-ikxdx 

v0 = v(k, 0) = /!So v(x, 0)e-ikxdx 

h0 = h(k, 0) = JZo Hx, 0)e~ikxdx 

The transformed shallow water equations are a coupled set of constant coefficient 

ordinary differential equations which can be solved fairly easily (see [Ref.  28]) and 

are 

V V 

v   =   ikgai + —— e    + —^e (5.2) 

when* 

A            f„        kHa2 -i* a. kH(*3 --"* h   =   jai —e     + —e 

v2   =   f2 + k2gH = f2(l+X2k2) 

fg~H 
X     =       f    • 

The o,'s are picked to satisfy the initial conditions. Recalling that sinx = 
cxx _|_ c-ix 

and fosj- =  we can rewrite (5.2) by using the intial conditions to solve for 
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cxi and then simplifying to get 

.,, * fvo  . ikgho  . 
u[k,t)   =   Uo cos ut-\ sm vt smut 

u v 

«„    N /«o   . (k2Hf     p ) A       ikgf r , y 
U(K,<)    = smut + <— 1—- cos ut>v0-\ —- {1 — cosut}h0 u \    u2        u2 \ vl 

t/1    . ikHüo  . ikHf r , A       f/
2     k2Hf K 

h(k,t)   = smut — {I — cosut}v0 +< —-] — cos ut > h0- 
u uz \u2 u2 J 

The steady state solutions are 

us(k)   =   0 

A ... k2gH A       ifcflr/y 
Mfc)    =   —r"uo H r""o vl u2 

*     . ikHf.      p* 
hs(k)    = — v0 rfto 

V1 u2 

or to rewrite 

By noting that 

us{k)   =   0 

A,7. A       J
2 fikgt       ^ 

vs{k)    =   v0 + — I -7-n0 - uo 

jm y #/2.,   /i%y A  > 
fts(/c)    =    h0 + -r—zlk\—r-ho-Vo 

f v2       \  f ) 

/oo 

-00 

=&   -ikx , 2A 2A/2 

e*etkxdx = = —— 
1 + k2X2        u2 
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and using the convolution theorem, Schoenstadt (see [Ref. 28]) inverted the steady 

state transformed equations to yield 

us(x) = 0 

1     roo    —\x-*\  (a Bh \ 
Vs(x) = v(x,0) + -j_^e—\^ — (s,0)-v(s,0)jds 

h.(x) = h(x, 0) - — y^ sgn(a: - s)e-^ \j^ 0) " v(s, 0)J ds. 

Note that in the one dimensional case, u(k, 0) does not contribute to the steady state 

solutions. Schoenstadt (see [Ref. 28]) goes on to explore the transient parts of the 

model, and these can be studied in more detail in his 1977 paper. 

Schoenstadt (see [Ref. 29]) also analyzed a difference scheme for one dimension 

shallow water equations that is similar to the one we will present later in this chapter 

for two dimensions. 

B.     TWO DIMENSIONS 
1.      Fourier Transform 

Recall that the Fourier Transform in 2 dimensions is 

f(Wi,w2) = f(f(x,y))= /     f(x,y)e-^x+w^dxdy, 
J—oo J—oo 

and the inverse Fourier Transform is 

Also recall several elementary properties such as: 

™        =    £>™ 
•H/r) =     iWiF(f) 

T(fy) =        iw^(f) 

T{Vf)    =   iwT(f) 
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We will use several of these properties later in this chapter when dealing with the 

continuous case and also the semi-discrete case. The convolution theorem will also 

be used in this section and, in two dimensions, it is 

A /-oo     l-OO 

f(x,y) = ?"1(g(k,l)-h(k.l))= /    g(x0,y0)h(x - x0,y - y0)dx0dy0. 
J—ooJ—oo 

2.      Continuous Case 

Recall the linearized shallow water equations from Chapter 3. 

du dh 

at ox 

dv dh 
-di + fu + % = ° (5-3) 

dh (du     dv\ _ 
dt \dx     dy) 

Following the work of Neta (see [Ref. 2]), we will go through the reasoning 

done by Neta and by Neta and DeVito (see [Ref. 7]) to arrive at their solution. Let 

us take the first equation of (5.1) and transform it using Fourier, 

'(i-/^i)-££e-/-^)-1^** 
fi     fOO     roo , v roo      TOO /*oo     poo  fih) 

= -£/     /    ue-^+^dxdy-f        /    ve-W'+Wdxdy + gf    f    fV^+'^Wy 

du 
= Hi ~ J*+ igkh = °" 

Similarly 
-(dv      . dh\      dii      „„     . ,? 

r(dh     „(du     dv\\     dh 
T{m+H{Tz 

+ Ty)) = m+'Hk& + imi = 0- 
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This is the reasoning that Neta and De Vito (see [Ref.   7]) used to show that the 

Fourier transform of (5.1) is 

Ü 

V 
  

Us 

Vs 

u0 

h hs h0 

cos id -\—-B 
v1 

Uo 

Vo 

h0 

smut (5.4) 

where A and B are given by 

P+ghk2   gHkl 

A = gHkl 

-iHfl 

P + ghP 

iHfk 

-igfk 

gH(k* + P) 

and 

B 

0 / -igk 

-f        0 -igl 

-iHk   -iHl   0 

Note that if you reduce the terms to one dimension, the results are the same as shown 

by Schoenstadt in the one dimensional case. The steady state solution for (5.4) is 

Us Uo 

vs -he vo 

hs ho 

where 
ghl2        —gHkl    —igfl 

C =     —gHkl   ghk2        igfk 

iHfl       -iHfk   p 

Uo, ^o and ho are the Fourier transforms of the initial conditions.  The frequency v 

(5.5) 

is given by u — f J\ + X2(k2 + I2) where A is the Rossby radius of deformation (i.e. 

Following Neta (see [Ref. 30]), we shall now take the inverse Fourier transform 

of (5.5) to obtain the steady state solution.  We will follow the arrangement of the 
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variables used there. They are 

D = ikuo + Hvo 

c = iluo — ikvo 

dx = t-kho - v0 

■ 9   * 
dy    = i—lhQ + u0 

where the steady state solution is 

us   = u0 + ^(X2ikD - dy) 

vs   = v0 + —(\2ilD + dx) 

H f        * 
hs   = h0 + ——(ikdx + ildy) 

We can now invert these equations using the convolution theorem and the following 

integrals. 
1     r2* 

— /     e
irpcos(*-9)#   = Jo(rp) 

Z7T JO 

1    [°°   J0(rp) 1    „ (r\ 

Jo and  A'o are Bessel functions of order zero.    Using these integrals, the inverse 

obtained from them, and the convolution theorem, we have the steady state solutions. 
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I       TOO     fOO     (J 

(x,y)   =   u0(x,y)-—J_   J^   —Ko(q((T,T))D((j,T,0)dadT 

2 roo     roo 
~^J_   J_   Ko(q((T,T))dy(a,T,0)dcrdT, 

2TTA
2
. 

2        rOO      roo     ^ [      roo    yoo    # 

t>,(x,3/)    =    v°(xiy}~2^J_   J_   ^Ko(q((T,T))D(ar,T,0)dadT 

/oo    roo 

/    Äo(g(<T,r))4(^,T,0)d<rdr, 
-oo J—oo 27rA   J-ooJ-oo 

and 

k,{x,y) = M^.y)-j2^y_00i.00lä~A-°^<T'r^dl'^'r'0^ 

+—K0{q{a, r))dx(a, r, 0) J dcrdr 

w here 

,   x V(x - af + (y_ r)2 
«for) =    -^  

D(<r,r,0)    =—- + —- 
au       OT . 

dx(a,T,0)   =   --x v0 f 0T 

J /        n\ 9 dh°   i 
J oa 

3.      Semi-discrete Equations 

Here we will present the semi-discrete shallow water system and then show the 

inverse Fourier transform for certain selections of a, ß, and 7V Semi-discrete means 

that time is not discretized. In the semi-discrete case, the shallow water equations 
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are 
du * 

dv 
=   0 (5.7) 

r\7 

a— + i#(71u + 720)   =   0 

where o, ß, 7J, and 72 depend on the scheme used (see tables II and III) from Neta 

[Ref. 30]. 

Scheme    a 

A2 

B2 

C2 

D2 

Table II. Filter weights for second and fourth order finite differences 

ß 

A4 

B4 

CA 

1)1 

7i 

sin kd 

kd       Id 
cos — cos — 

2 2 

kd       Id 
cos — cos — 

2 2 

kd       Id 
cos — cos — 

2 2 

cos — cos — 
2 2 

rf 

sin f cos f 

2 

sinf 
d 
2 

sin fee? cos Y 

</ 

8sin fcd — s'm2kd 
6d 

(-sin^ + 27sinf)cos? 
12ci 

-sin^ + 27sinf 

12rf 

(8 sin fcd — sin 2A:</) cos ? 

72 

sin Id 
d 

sin f cos f 
d 
2 

sin? 
d 
2 

sin /</ cos Y 

d 

8sin /</ — sin 2ld 

6d 

( -sin ^ + 27 sin?) cos ^ 

12</ 

-sin ^ + 27 sin? 

12«/ 

(8sin/</-sin2/r/)cos§ 

U (id 
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S eherne 

FET 

FER 

Table III. Filter weights for finite elements 
a = ß 7i 72 

3 + cos kd + 2 cos y cos Id    2(sin kd + sin y) cos Id cos y sin Id 

6 3d d 

(2 + cos kd)(2 + cos Id) (2 + cos ld)(s'm kd)        (2 + cos kd)(s'm Id) 

9 3d 3d 

The two schemes for finite elements in Table III are for triangles (Finite 

Element-Triangle or FET) and rectangles (FER). 

The Fourier transform of the steady state solution is similar to the steady state 

solution of the continuous case and is written as follows with obvious changes from 

the continuous case. 
u0 us 

Vs 

hx 

1 
a2 v2 a D V0 

h0 

where 

CD = 

ghil -flr#7i72    ~wfßl2 

-##7i72   gfvyf igfßlx 

iHfßl2      -iHfß-n   ß2f2 

(5.8) 

and 

<*>   =   ßfy/l + A2,(7l
2 + 7l) 

VgH 
A D 

ßf 
There is a great deal of similarity between the continuous case and the discrete case 

up to this point. We can carry it further and define as before 

D(k,l,0) 

C(M,0) 

<i(M,o) 

dy{k,l,0) 

= ijiüo + «72^0 

= i~f2Üo - ifiVo 

= ijliho- ßv0 

= ijj2ho + ßüo- 
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Therefore the steady state Fourier transforms of the semi-discrete shallow water equa- 

tions are 
f2 

i2- üs = ü0 + -^:(\2i~fiD - ßdy) 

vs = vo + -^(X2ij2D - ßdx) (5.9) 
a"2!/2 

hs = h0 + —-Y^ihidx + i^dy). IX 
f a2v2 

Notice that the Rossby radius of deformation (A) was used instead of the its discrete 

analog (Ap). 

a.        Finding the Steady State Solutions for Scheme A2 

Let 

(   f2    \ f°°    f°° ei(kx+ly) >^=^[-h)=ri -«,J-ceß*(k,l) + A*[7l
2(M) + 7?(M)1 

For scheme A2, T~l{i^\q{k,l)) is 

! sinfcrf /■«> fd dq(x0, y0) 1  ,, *,     , 

1    rddg(x0,y)d^ 

2dJ-d     dx 

dkdl. 

^[q{d,y) - q(-d,y)] 

and T 1(i~f2(j(k,l)) is 

, ,finW y«> f^dqix^yo) 1 Xf . 

1   fddq{x,y0), 

2dL—dy—y0 

— [q{x,d)-q{x,-d)]. 
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It follows in the semi-discrete case of the shallow water equations, by using the con- 

volution theorem the steady state solution for scheme A2 is 

dlm{x - a,y - T) 1 
u ,(*, y) = «„(*, y) + A2/_~/_~ dy        UUo{d'T'0) " UoM'T' °)] 

-Im(x -<r,y-T) ( — j   [{v0(d,d) - v0(d, -d)} - {v0(-d,d) - v0(-d, -d)}} \ dadr 

/oc.    roc 

/    Im(x -<r,y — T)dy(cr, r, 0)dadr 
■ooJ—oo 

t>.(*,y) = t,0(x,y) + ^/l/l {9/m(g"ä^,y"T)^[t,o(o,'d>0) " Uo((T' ~^'°)] 

-/„(* -<r,y-r) ( — )   [{Md, d) - u0(d, -d)} - {u0(-d, d) - u0{-d, -d)}} > dadr 

/oc.    rex- 

/     lm(x - a,y - r)dx(a,T,0)dadT 
- OC' J — OC' 

-/m(x - o,y- r)[vo(d,T,0) -vo(-d,T,0)] 

-Jm(x - a,y- T)[u0{cr, d, 0) - u0(cr, -d, 0)] 

^dlm(x-c,,y-T)g_ _ ho(a_d0)]\d(TdT 

oy f J 
(5.10) 

where 

dx(x,y,0)   -    j—:[ho(d,y)-ho(-d,y)]-Vo 

dy{x,y,0)   -    -—[h0(x,d)-ho{x,-d)} + u0. 
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Note that dx(x,y,0) is a centered difference approximation which approaches ux as 

d approaches 0. One should be able to obtain similar results for the other schemes 

listed in the tables. 

b.        Solving for Im 

The reason for this thesis is to show which semi-discrete method has 

an inverse Fourier transform which can be back transformed in a closed form. By the 

Lax equivalence theorem, if we can show that Im is bounded in some sense, then the 

solution is stable also. Numerical analysis may be used to solve this problem, but a 

simple closed formula is considered a more ideal solution. Let us look again at 

(p    \ /-oo    roo &i(kx+ly) 

^)=LL^(k1i)+x[^(k1i)+^(k1i)]dkdl-   (5-n) 

Note that the limit of Im for any of the schemes when d -» 0 is 

e*(kx+ly) /oo    /• oo 

-ooJ—oo 1 
-dkdl. 

+ A2 (k2 + P) 

By using the identity £ = /0°° e~Xad\, we have the following triple integral, 

/, m r r r e^+<*v W2(*2+<2) W/^, 
JO    J—ooJ—oo 

which can be rewritten as 

lm =  re-
ß ( r eikxe-^2k2dk [°° eilye-ßX2l2dl\ dfi. 

JO \J-oo J-oo ) 

Evaluate the three integrals separately in this form and it easily can be shown that 

limA2/m = — A'o 
d-+o 2TT 

where A'o is the Bessel function of order zero from (5.6). This shows that the steady 

state solution of the semi-discrete system (5.10) approaches the corresponding solution 

(5.">) of the continuous case. 

Refering to Neta and Devito (see [Ref. 7]) we have several second and 

fourth order finite difference equations (Table II). In scheme A2 we have 

/oo    roo                        e«(^+'</) 

/     TTn-R ^TTn^dkdl. (5.12) -ooJ-oo i + A
2
 (5inM + £ü2!Mj v      ' 
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By noting in (5.12) that we have, for example, cos k in the numerator and that the 

denominator is positive and finite, we see that IA2 does not converge. What one can 

do is look at I AT. to determine if there is any useful information which can be drawn 

from it. This information then can be used to predict some aspect of the semi-discrete 

shallow water equations. Latta ([Ref. 31]) suggested the following reasoning. One 

can rewrite I AT as 

ei(kx+ly) 

'42 

2       TOO      fOO 

CJ-J-™T+(sm2{kd) + sin2(/d)) 
dkdl 

A2 

where (7 = —. Notice that C is a constant. Now if one lets kd -> k and Id —$■ I, I AT 
a1 

becomes 

IA^JTTJ    /    ,     (.2n, r-^sdkdl. (5.13) 
CdiJ-^J-<*>!+ \sm2(k) + sm2(/)J 

Let k —> k + 7T and / —>• I + ir. This shows that I AT is infinite where I AT = Z^IAT and 

IA2 = e'd71I AT- Therefore IA2 is infinite when x = 2md and y = 2nd where m and n 

are integers and IA2 — 0 otherwise. The solution to IA2 will l°°k like 
00 OO / I \ 

Now take the inverse Fourier Transform of the middle term to get 
1 \ 2       oo oo -i 

i2mk J.2n\ 
/ j       / j   &mn& C 

^W  mt:^^  mn i + sin2(fc) + sin2(/) 

By noting that we are only interested in the real part of I AT, we can write the equation 

as 
oo oo 4^2 

Ji.°- "■ {2mk) cos (2n" = i+d»»(t)+ »•(«)• 
Using the Fourier Cosine series, we can write the coefficients amn as 

(■2TT r2ir cos (2mfc) cos (2nl) 
-dkdl. 

_   r** r** cos (2/7 

Jo   Jo    ~ + sin' (fc) + sin2(/) 

2 n      1 — cos 2/9 
Now using the trigonometric substitution sin  ß — , we get 

r2n f2*       cos (2mk) cos (2nl) 
-dkdl 

_   /■■**■ r^       cos (2mfc) cos [Znl) 
amn~Jo   Jo   1      !      cos(2fc) + cos(2/) 

C + 1- 2 
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which can be written as 

2TT   /-27r 

O-n =11 Jo   Jo 

cos (2mk) cos (2n/) 

1 + C 

c 
/ 

cos (2fc) + cos (2/) 

2TT^ 

\ 
■dkdl. 

C I 
1 

Using the geometric series expansion (  = 1 + x + x  + x  + ...), we can write 
•1-x 

™mn  aS 

/■27T     /•2-7T ' °°      r C 1 " 
amn=        /     cos(2mfc)cos(2n/)^   -—— (cos(2fc) + cos (2/))    dkdl     (5.14) 

Note that cos (2mA;) cos (2nl) < 1 and (cos (2k) + cos (2/))" < 2". Therefore 

am"-4"2SvTTc) ' 
This means that amn is bounded and it follows that although IAI infinite, it is stable 

at each lattice point. 

r=0 

Since (a + b)" = y^ 

/ 

/^ 

Vr / 
a1" r6r, (5.4) becomes 

j/    \     /•2TT 

V 

/•27T /-27T 

/    cos (2A;m)cosr (2k)dk /     cos (2/n)cos"_r (2l)dl. 

Using Gradshteyn and Ryshik (see [Ref. 32], p. 374), one gets the following definite 

integral. 

JQ cos (2mk)cosr(2k)dk = 

s 

(l + (-l)2"l+r) 

(2m - r)(2m - r + 2)...(2m + r) 

7T 

2r+l 

r! 

I (2t + l)!!(4m + 2i+l)!! 

[r < 2m]; 

[2m < r and r — 2m = 2i]; 

[2m < r and r — 2m = 2i + 1] 

(5.15) 
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where 
0       [2m-r = 2t]; 

s = <   1       [2m-r = 4s + 1]; 

-1    [2m-r = 4*-l] 

Since amn is the same across any lit interval, we can write it as 

^mri —   /  y 

c 
^V2 + 2C 

£ [       | /* cos (2&m)cosr {2k)dkT cos (2/rc)cosi/-'' (2Z)<#. 
r=0 \   r 

Noting that cosine is even, this can be rewritten as 

C 
£     V      r cos (2fcm)cosr (2k)dkT cos (2/rc)cos"-r (2/)<W. 

„=0  KZ + lljJ     r=0 

By using (5.15), we note that if v is odd, then amn = 0. Also if v is even and r is odd 

then amn = 0. Therefore v = (2m + 2n-\- 2i + 2j) where r = 2m + 2i. Now we note 

if r < 2m or v — r < 2n, then amn = 0. From these observations of (5.15), it follows 

that 

arnn~45^2+2<? 
v 

r=0 \   r 
£ 

\ 
■K 

2r+l 

7T v — r \ 

2>s—r+l 

'        / 

C A 

This can be reduced to 

OO '      V 

''JL, JiL V4 + 4C^   (r-0!i!(^-r-i)!j! 
Where the prime on the summation means to count only even indices. Therefore 

„2        oo oo l oo oo <x> •      V     '    / 

IA2 = r^p ^-  5Z   £   2Z (: v-/U   m = -oon=-ooi/=2m+2n r=2m    N 

c /I 

4 + 4C7   (r - i)\i\(t/- r - j)\j\ 
—-S(k-2m)8(l-2n) 

or in terms of A 

_2      oo oo 

^2 = ü E  E   H   H 
Aa

m^oo«^co^t;3»r^n W + *2)/   (r - i)!i!(„ - r - j)!j! 
£(Jfc-2ro)6(/-2n). 
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VI.        CONCLUSIONS 

The basis of this thesis was to help the reader form a better understanding 

of the shallow water equations and also to see if an inverse Fourier transform for 

the semi-discretized system can give any information on how the system behaves as 

a function of time. The first four chapters consisted of background material that I 

compiled as a result of studying the shallow water equations, and also in an attempt to 

give the reader a logical order to better facilitate understanding of the later material. 

As can be seen, various forms of the shallow water equations were discussed and 

derived. Most of that work was taken directly from the references and were so noted. 

I feel this thesis will stand as a means for future students to more easily come to an 

understanding of shallow water equations and help them to pursue the next step in 

the process by finding a way of looking at other finite difference and finite element 

schemes. 

I hope you enjoyed reading this thesis. 
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